
Enhancing diffraction-limited images
using properties of the point spread

function

Alex Small
Section on Biomedical Stochastic Physics, Laboratory of Integrative and Medical Biophysics,

National Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, MD 20892

smallalex@mail.nih.gov

Ilko Ilev
Office of Science and Engineering Laboratories, Food and Drug Administration, Rockville,

Maryland 20851

Victor Chernomordik, Amir Gandjbakhche
Section on Biomedical Stochastic Physics, Laboratory of Integrative and Medical Biophysics,

National Institute of Child Health and Human Development, National Institutes of Health,
Bethesda, MD 20892

Abstract: We propose an algorithm to enhance diffraction-limited images
based on pixel-to-pixel correlations introduced by the finite width of the
Point Spread Function (PSF). We simulate diffraction-limited images of
point sources by convolving the PSF of a diffraction-limited lens with
simulated images, and enhance the blurred images with our algorithm.
Our algorithm reduces the PSF width, increases the contrast, and reveals
structure on a length scale half of that resolvable in the unenhanced
image. Our enhanced images compare favorably with images enhanced by
conventional Tikhonov regularization.
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1. Introduction

Due to the fundamental Rayleigh diffraction limit, an aberration-free lens cannot clearly re-
solve features smaller than approximatelyλ /(2NA), whereλ is the wavelength of light and NA
is the numerical aperture of the imaging system [1]. This limitation corresponds to the width
of the point spread function (PSF). Techniques for circumventing the diffraction limit typically
involve either specialized illumination [2, 3, 4, 5, 6], or enhancement of blurry images [7, 8].
Specialized illumination techniques like stimulated emission depletion (STED), when used on
fluorescent samples, can achieve excellent spatial resolution (≈ λ/50) by bleaching fluores-
cence from the edge of the PSF. However, STED and other techniques based on illumination
require more elaborate equipment than conventional optical microscopy. Superresolution algo-
rithms, while requiring no specialized equipment, tend to be mathematically complicated [7].

We have developed an algorithm that is far simpler than most other image enhancement
techniques, and can yield significant enhancement of lateral resolution in a single step. It works
particularly well for the resolution of small, bright objects on dark backgrounds, conditions
frequently realized with small fluorescent probes in biological samples [9]. Unlike most super-
resolution algorithms, our goal is not to transform a blurryimage into a collection of discrete
point objects. Rather, we seek to enhance images with 3 goals: (1) Reveal the presence of mul-
tiple probes when diffraction blur makes it difficult to discern whether the image contains a
single probe or multiple probes, (2) track the spacing between probes separated by a distance
shorter thanλ , and (3) track changes in the relative intensities of two probes separated by a dis-
tance shorter thanλ . These enhancement capabilities are desirable in biology,where fluorescent
probes separated by short distances may aggregate or move apart in the course of an experi-
ment, or fluctuate in intensity in response to changes in the local environment. As we show in
this paper, our algorithm achieves these goals, is competitive with other image enhancement
techniques, and is exceedingly simple to implement.

Our algorithm exploits the fact that the finite width of the PSF introduces correlations be-
tween pixels. When using a microscope objective to image an object onto an array of pixels,
we can think of the signal recorded by a pixel as being the sum of two distinct parts: (1) light
from a conjugate region on the object; and (2) light from neighboring regions on the object,
directed onto the pixel by diffraction from the finite aperture. It is the second part of the signal
that introduces blur and limits image resolution. If the second part of the signal can be accu-
rately estimated, we can correct for it and enhance an image to reveal features smaller than
the diffraction limit, typically 500 nm in optical microscopy. We use the basic features of the
diffraction-limited PSF (width, slope, and node) to compare a pixel with other pixels in its
vicinity and estimate the contamination portion of the signal. Our technique can provide infor-
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mation on the distribution of fluorescent probes down to length scales as small as 40% of the
Rayleigh limit.

2. Constructing the algorithm

We will initially discuss imaging without noise, and near the end of this section discuss the ef-
fects of noise and how to deal with it. In all of this analysis we will assume that the object being
imaged consists of a handful of sparse point sources, a situation realized in many biological
experiments with fluorescent probes.

Consider a single light source in the focal plane of a diffraction-limited lens. If the source
has a width much smaller thanλ , and also smaller thandx/M, wheredx is the width of a pixel
in our detector andM is the magnification of our imaging system, then we can regardit as a
point source. In the image plane, we will see an Airy Disk witha profile given by

I(r) =

(

J1(NA ·k0 · r/M)

NA ·k0 · r/M

)2

(1)

wherer is the radial distance in the image plane,k0 = 2π/λ , andJ1 is the first order Bessel
function (of the first kind) [1]. The PSF is plotted as a function of distance in Fig. 1. We will
focus on two key features of this PSF. The first is the node located atr1 = 0.61· λ ·M/NA.
For visible light (λ = 400−700 nm) and a decent objective (NA = 0.5 for convenience), this
corresponds to a distance of 600 nm in the object plane. The second feature of interest is the
inflection point, where the slope of the PSF is a maximum. Thisis located atr2 = 0.235·λ ·

M/NA, which for our choice of parameters corresponds to a distance of 235 nm in the image
plane. These key features are indicated in the plot in Fig. 1.

Our imaging geometry is indicated in Fig. 2. Consider a pixel, which we will call P, in the
image plane of a diffraction-limited lens. P is conjugate toa region of the object plane which
we will call O, and receives light from O, as well as light fromneighboring areas of the object
plane. Our goal is to get a good estimate of the amount of lightcoming from sources located
within the region O in the object plane.

We begin by using the node of the PSF to estimate and subtract the portion of the signal due
to blur. In Fig. 2 we have drawn a ring R1 of pixels located at a distancer1 from P (wherer1,
as above, corresponds to the first node of the PSF in Fig. 1). These pixels are not receiving any
light from O. If we are trying to image fluorescent probes separated by a distance shorter than
the diffraction limit, then we can assume that any light falling on these pixels is dominated by
light from objects close to O, which contribute blur to the signal recorded at P. By averaging
the signals recorded on the pixels located along R1 we get an estimate of the amount of blur
included in the signal at P.

We can also gain information by considering the ring R2, located at a distance from P corre-
sponding to the inflection point of the PSF (r2 = 0.235·λ ·M/NA, as above). Due to the steep
slope of the PSF at that distance, the signal along R2 is especially sensitive to small displace-
ments of light sources at or near O in the object plane. This issimilar to the concept exploited in
differential confocal microscopy [10, 11]. If the intensity registered at the pixel P (after back-
ground subtraction) isI1, then if there were only a point source at O and no other light sources
in the vicinity, every pixel along R2 would register a valuePSF(r2) ∗ I1 = 0.56∗ I1. However,
if different pixels along R2 record different values then wecan conclude that they are receiving
light from sources other than whatever is located at O. The pixel recording the lowest value
along R2 is the one that received the least light from sourcesnot located at O. This is similar
in spirit to the CLEAN algorithm [12, 13], in which local extrema are used to infer information
on the distribution of radiation sources. However, we use minima rather than maxima, and at
each step only search for minima in a small portion of the image.
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Fig. 1. A plot of the PSF for a diffraction-limited lens, identifying the node (located at
r1) and point of steepest slope (located atr2). Both of these features are exploited by our
algorithm.

Fig. 2. An illustration of our imaging geometry. A region O in the object plane isimaged
onto a pixel P in the image plane. When enhancing the image we examine pixelsalong the
rings R1 and R2, which correspond to the node and inflection point of the PSF, respectively.
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We cannot, however, conclude automatically that the pixel recording the lowest value along
R2 is the one providing the best estimate of the light source located at O. We must also consider
the light detected at the pixel P. If the other light sources are close to O but not symmetrically
distributed around O, then they will send more light to pixelP than they send to at least some of
the pixels along the circle R2, and the lowest value recordedalong R2 will be less than 0.56∗ I1.
In this case, we should use the lowest value recorded along R2to estimate the light coming from
O, and divide that value by 0.56 to account for the shape of thePSF. On the other hand, if the
other light sources are located somewhat farther from the point O in the object plane, or evenly
distributed around O, then the pixels along R2 will receive more light from those sources than
the pixel P. In that case, the lowest value recorded along R2 will be greater than 0.56∗ I1, and
we should simply use the value recorded at the pixel P (I1) as the best estimate of the light
coming from O.

These considerations motivate us to propose the following two-step algorithm for enhancing
diffraction-limited images:

Step 1: For each pixel in the image, draw a ring R1 around it, with a radius corresponding to
the first node of the PSF (r = 0.61·λ ·M/NA). Compute the average intensity along the edge
of this circle, and subtract that average from the signal measured at the center of the circle. Set
all negative values equal to zero, since negative values indicate a pixel is recording diffraction
blur rather than light from a conjugate region in the object plane.

Step 2: For each pixel in the post-subtraction image, draw a ring R2 around it, with a radius
corresponding to the inflection point of the PSF (r = 0.235· λ ·M/NA). Find the minimum
intensityImin along R2 and compare it with the intensityI1 at the center of the ring. IfImin <
0.56 I1, replaceI1 with Imin/0.56. Otherwise, leaveI1 unchanged.

Noise is an obvious concern in the second step, which selectsa minimum. Anomalously low
values could be propagated. However, imaging systems commonly used with microscopes can
achieve noise levels lower than 1%. If noise reduction is notpossible with the hardware in use,
noise can be filtered with a simple moving average. The information used in step 2 comes from
the linear portion of the PSF, which has a width of approximately 200 nm. A moving average
taken over a box with width≤ 200 nm can reduce noise without washing out the signal of
interest, since a moving average applied to a linear function returns the same linear function.

It is also worth discussing whether the logic of the second step can be said to hold rigorously
after the background subtraction in the first step. We have examined this issue, and found that
properly accounting for the effects of background subtraction would require that we use a value
of r2 that is about 5% lower, and reduce the 0.56 ratio to approximately 0.52. However, the
precise values of the optimal adjustments depend somewhat on the content of the image. Also,
optimizing the parameters yields only slight improvementsin performance (barely noticeable
under visual inspection), as long as the second step is working in the linear portion of the PSF.
As long as we are working in that linear region, where the slope is steep and approximately
constant, the precise radius used does not matter appreciably. We see this robustness against
small changes in parameters as a virtue of our algorithm.

We also note that our algorithm can be easily modified for situations in which the PSF dif-
fers from Equation (1), perhaps due to aberrations, or washing out of the nodes due to non-
monochromatic illumination. In all such cases there will still be a distance at which the slope
of the PSF is maximized. The second step of the algorithm can therefore be changed simply by
substituting the appropriate radius and value of the PSF. The first step of the algorithm, estimat-
ing a background, can also be implemented for any realistic PSF, even if the node of the PSF
is washed out. Draw the circle R1 at a distance where the PSF has decayed to a small (user-
defined) valueε, and average the signal recorded around R1. That average signal represents the
background, plus a contribution due to the object at the center, with valueε times the center
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value. It is therefore easy to correct the background estimate before subtracting it.

3. Methods

We tested our algorithm computationally. We generated arrays of pixels bright point sources on
a dark background. We then convolved these arrays with the PSF of a diffraction-limited lens,
given by Equation (1), to simulate the image that a diffraction-limited lens would produce. For
computational simplicity, the PSF was truncated to zero after the third node (corresponding to
a distance of 1.6µm in the object plane). Past the third node, the PSF is less than 0.2% of
its maximum value, and hence negligible. Finally, we enhanced our images with the algorithm
described above. All calculations were performed in Matlab.

We assumed a wavelengthλ = 500 nm, and a lens with NA = 0.5. We typically assumed
a pixel size of 4µm, comparable to high quality digital cameras. Assuming an imaging sys-
tem with a magnification of 100, 4µm pixels in the image plane correspond to 40 nm squares
in the object plane. Calculations with smaller pixel sizes (1.25 µm or 2.5 µm, correspond-
ing to 12.5 nm or 25 nm squares in the image plane) were performed and compared with the
lower-resolution results to verify that our results were inno way artifacts of pixel size. We will
generally show the lower-resolution images, as they are more realistic given current hardware.
However, work performed at higher resolution will also be shown, and the higher resolution
will be noted.

To simulate the effects of noise in light detection, we introduced Poisson noise into the
diffraction-limited images. At each pixel we generated a random number from a Poisson dis-
tribution, using the “imnoise” command in Matlab. The mean and variance of the Poisson dis-
tribution were set by the pixel value in the diffraction-limited image (before the introduction
of noise). Except when noted, each image was normalized so that, prior to the introduction of
noise, the peak value was 100 counts, giving a Poisson distribution with a mean of 100 and a
standard deviation of 10, or a signal to noise ratio of 20 dB. This noise level was chosen to test
the performance of our system under realistic conditions. Noisy images were then smoothed by
a moving average with a box width of either 120 nm (4µm pixels) or 100 nm (1.25µm and
2.5 µm pixels).

4. Results

We begin with the simplest case, of a single point source. In Figure 3 we show (a) diffraction-
limited and (b) enhanced images of a point source. The intensity profile (c) shows that the
diffraction blur is not only narrower in the smoothed and enhanced image (≈ 200 nmvs.500
nm full width at half maximum, or FWHM), it also has a steeper profile without a flat top,
giving greater contrast.

In Fig. 4 we show diffraction-limited and enhanced images ofpairs of point sources (equal
intensities) separated by 400 nm and 240 nm. In one of the cases the point sources are located
along a diagonal axis rather than the horizontal direction,to demonstrate that our algorithm’s
results are independent of orientation. Enhancement failsto resolve the image into distinct point
objects. However, it does significantly increase the aspectratio of the image, clearly revealing
the presence of structure.. We have verified that the same qualitative behavior remains for a
range of pixel sizes (down to 12.5 nm in the object plane) and noise levels.

More importantly, our algorithm shrinks the horizontal FWHMof the image (and hence the
estimate of the object spacing) to approximately the objectspacing. This trend continues down
to probe spacings as small as 200 nm (λ/(2.5 ·NA)). By way of comparison, the diffraction-
limited images over-estimate object spacings by approximately 500 nm. Looking in the vertical
direction (transverse to the line connecting the point sources), diffraction-limited images only
localize the sources within approximately 500 nm, while ourimages localize the point objects
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Fig. 3. (a) Diffraction-limited image of a point source. (b) Enhanced image. (Scale bars in-
dicate wavelength of light). (c) Intensity profile of diffraction-limited and enhanced images,
taken along the horizontal axis through the center of each image. Features and asymmetry
due to noise and pixellation.

to a region 150-200 nm across, with the vertical localization improving as the object separa-
tion increases. If the user knows these aspects and limitations of the algorithm, quantitative
information can be inferred concerning the spatial distribution of fluorophores in a microscopy
experiment.

To explore the aspect ratio issue more quantitatively, in Fig. 5 we plot the aspect ratios of
diffraction-limited and enhanced images as a function of object spacing. The aspect ratios were
estimated from the FWHM measured along the horizontal and vertical directions. The error
bars reflect the uncertainty due to finite pixel size, and so tominimize the effects of pixel size
we analyzed images with smaller pixels, corresponding to 12.5 nm in the object plane. For
these purposes we also refrained from introducing noise, although we have verified that mod-
erate noise does not significantly affect aspect ratios. Thedifference between the diffraction-
limited and enhanced images remains significant down to separations of approximately 200
nm, orλ/5NA in terms of our computational parameters. Significantly, this corresponds to the
FWHM obtained when enhancing an image of a single point source. It seems thatλ/5NA, or
approximately 40% of the Rayleigh limit, is the limit of resolution when applying our method
to images of fluorescent point probes, consistent with the FWHM obtained for a point source
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Fig. 4. Images of two point objects of equal intensity, with spacings noted on scale bars:
(a), (b), (c) Diffraction-limited images; (d), (e), (f) Enhanced images.
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Fig. 5. Aspect ratios of diffraction-limited and enhanced images of two point objects of
equal intensity, plotted as a function of the object spacing.
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Fig. 6. Images of two point objects of unequal intensity, with spacings indicated by scale
bars and intensity ratios noted below. (a),(c),(e) Diffraction-limited images. (b),(d),(f) En-
hanced images.

in Fig. 3.
We also analyzed images of point sources with unequal intensities. Representative images are

shown in Fig. 6. When such images are enhanced, a noticeable “tear drop” shape is revealed.
The distinctive shape becomes more pronounced with increasing contrast ratio but less pro-
nounced with decreased object spacing. Unlike aspect ratioenhancement, the tear drop shape
due to contrast between the point sources is only visually apparent for object spacings greater
than approximately 300 nm. To better highlight the teardropshape, we used a pixel size of 2.5
µm on a side (25 nm in the object plane). For the noise level, we again normalized so that the
peak value in each image was 100 before enhancement. Since weare using smaller pixels, this
corresponds to a longer integration time.

We have also applied our algorithm to images more complicated than two discrete point
objects. When working with multiple point objects, the main limitation we find is that we
cannot distinguish between, say, a pair of fluorescent probes separated by 400 nm or a row
of several fluorescent probes in a row spanning 400 nm. Also, it becomes very difficult to
distinguish a roughly circular distribution of molecules from a single molecule, if the molecules
are separated by less than approximatelyλ/NA. However, in the hands of a careful user this
is not an insurmountable flaw. In many cell biology experiments the observer is interested in
whether two molecules came together, whether molecules areinside or outside an organelle,
or whether a molecule crossed a membrane[9]. In all such circumstances, it is useful to have
the ability to infer the existence of multiple probes (as opposed to a single bright probe) and
measure distances smaller than the diffraction limit. And frequently the experimenter will know
whether the events under observation are likely to involve two probes or many probes, based
on prior knowledge of his system. Also, applying our method to images more complicated than
discrete and sparse point sources fails to achieve significant enhancements. However, as we
have emphasized, our algorithm remains useful for situations commonly encountered in cell
biology.

5. Comparison with conventional Tikhonov regularization

We compared our algorithm with enhancement by conventionalTikhonov regularization [14].
Tikhonov regularization approaches image enhancement as an inverse problem: Consider the
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Fig. 7. Images of two point sources separated by 320 nm (scale bar).(a) Original
diffraction-limited image. (b) Image enhanced by our method. (c)-(e)Images enhanced
by Tikhonov regularization with regularization parameterλ = (c)1.0, (d) 4.3, and (e) 10.0.

PSF as a matrix acting on a vector of intensity values (pixelsin the original object) to produce
a new vector of intensity values (pixels in the final image). If the PSF matrix is inverted, then
in principle the original image can be obtained from the diffraction-limited image. In practice,
however, the inverse of the PSF matrix acts to strongly amplify noise. Some tradeoff is therefore
needed between avoiding noise amplification and enhancing features. Methods that make these
tradeoffs are called regularization methods, and a particularly common and easy to understand
method is called Tikhonov regularization. Tikhonov regularization quantifies this tradeoff with
a dimensionless parameter calledλ , whereλ = 0 corresponds to naive inversion of the PSF
matrix, and increasing the value ofλ gives greater weight to avoiding noise amplification.
(Deference to two different conventions unfortunately requires that we attribute two different
meanings to the same symbol, a situation for which we most heartily apologize.) For a detailed
description of Tikhonov’s method and methods for choosing the parameterλ see the references
[14].

We implemented Tikhonov’s method with the publicly available packageRegularization
Tools 3.1 by P.C. Hansen [15, 16]. This package of tools can be implemented in Matlab. To
avoid any complications associated with spatially correlated noise, we skipped the moving av-
erage step and instead worked at a lower noise level (maximumcounts value is 300 instead of
100). This should also favor Tikhonov regularization in thecomparison, since regularization
becomes closer to exact deconvolution as the noise level becomes lower, while even in the ab-
sence of noise there are limits to how much information our algorithm can reveal in an image.
We chose the regularization parameterλ = 4.31 by using the L curve method [16, 14]. We
compared these results with a range of regularization parameters (λ = 0.1 to λ = 10).

In Fig. 7 we show (a) diffraction-limited and (b)-(e) enhanced images of two point sources
separated by 320 nm. Application of the Tikhonov method in (c), (d), and (e) fails to achieve any
significant improvement of the image, revealing neither distinct points nor enhancing the aspect
ratio of the blur. We show images enhanced with regularization parameterλ = 1, 4.31, and 10.
The images are remarkably similar, confirming that the lack of significant improvement cannot
be explained by extreme sensitivity to parameters. Tikhonov regularization provides a hint of
the two-point structure of the image, but the width in the enhanced image has no correspon-
dence to the actual probe spacing, which would be desirable in many biological experiments.
Tikhonov regularization also amplifies noise, producing ringing and haloes that would tend to
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obscure nearby dim objects in more elaborate images. Decreasing the regularization parame-
ter even further amplified noise and introduced a backgroundextending beyond the range of
the blur in the original image (a). Further increases in the regularization parameter suppressed
background and slightly decreased the aspect ratio of the enhanced image, the precise opposite
of what we want when looking for structure. By comparison, our method significantly enhanced
the aspect ratio of the diffraction blur without introducing background artifacts.

6. Conclusions

We have introduced a simple and effective method for enhancing diffraction-limited images of
sparse point sources, conditions frequently realized in biological experiments with fluorescent
probes. Our method can be used to qualitatively track changes in probe spacing and relative
intensity. As long as the probes are separated by more than 200 nm, the aspect ratio will reveal
the presence of multiple probes, and the size of the blur willapproximately track the object
spacing. Contrast fluctuations can be tracked by monitoringthe shape of the enhanced blur.
Changes in contrast may be especially interesting if the fluorescent intensity is sensitive to the
local environment or concentration of a dissolved species,enabling detection of concentration
gradients. Most significantly, the relative simplicity of our method compared with many super-
resolution algorithms makes it ideal for enhancing movies of fluorescent probes. Work is in
progress to verify the capabilities of our algorithm with real images rather than simulations. A
particularly promising way to test the algorithm is with fiber-optic nanoscale probe [17]. Unlike
fluorescent probes, which can diffuse, and also vary in brightness due to their environment, we
can control the spacing and relative intensities of fiber-optic nanoscale probes.

Also, the efficacy of our very simple method underscores two ideas that may be fruitful for
future work. The first is that the correlations introduced bydiffraction have finite spatial ex-
tent. Pixels outside the range of the PSF can either be disregarded in a computation, or used
to estimate a background. These ideas reinforce the significance of wavelets in image process-
ing. The second idea is that the most important information transferred to the image plane by a
diffraction-limited lens is not stored in the center of the diffraction blur. The center of the PSF is
flat, and small displacements yield only small changes in thesignal. Rather, the most important
information is actually off-center, where the slope of the PSF is a maximum and small displace-
ments yield large changes in intensity. This idea has previously been exploited to improve the
longitudinal resolution of image acquisition in differential confocal microscopy, and now we
have exploited this idea to enhance lateral resolution in a post-acquisition technique. We spec-
ulate that it may also be possible to enhance lateral resolution in image acquisition using these
ideas, perhaps achieving resolution on length scales that are inaccessible to our post-acquisition
approach.
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